Skip to content

Down the Road

November 27, 2015

Churchill, Manitoba: August 25th, 2015

A cobble hanging from a tripod forms an ad hoc "wind gauge" near the Churchill Northern Studies Centre.

A cobble hanging from a tripod forms a humorous ad hoc “wind gauge” near the Churchill Northern Studies Centre.

Down the road there is always something new to see. Even on a road you have travelled before, there will be unseen treasures, just waiting by the roadside to be discovered.

At the Churchill Northern Studies Centre (CNSC), our 2015 field season was complete. It had been a fantastic two weeks, possibly the best ever, but now it was done. The samples had all been wrapped, bagged, boxed, and palletized. Together with the field gear they awaited shipping in the dark of the former CNSC building. Our clothes, boots, and rain gear had been stuffed into packs and duffles, we had cleared out “our” vehicle, and we had tidied all of the lab spaces we had temporarily occupied.

Michael Cuggy (L) and Dave Rudkin on the road, with the Churchill Northern Studies Centre on the horizon behind them.

Michael Cuggy (L) and Dave Rudkin on the road, with the Churchill Northern Studies Centre on the horizon behind them.

We really had nothing left to do on this clear morning, which felt warm yet carried within the first hints of an early-arriving northern autumn. Nothing to do but put on our walking shoes, gather up cameras, sign out a shotgun, and take a wander down the launch road. Plenty of time to contemplate this beautiful land, to examine in detail a stretch of gravel that we normally passed at what passes for highway speed around Churchill. And, of course, plenty of time to feed a bit more blood to those Churchill mosquitoes.

CNSC is to the left of the old research rocket range.

CNSC is to the left of the old research rocket range. The shrubs are already wearing the brown foliage of early autumn.

Between CNSC and the sea, the landscape is about 50% water.

Between CNSC and the sea, the landscape must be close to 50% water.

Let's take a look at the bottom of this little pond . . .

Let’s take a look at the bottom of this little pond . . .

The bottom of the pond is cloaked with a wrinkled microbial mat.

The pond bottom is cloaked with a microbial mat, which is wrinkled and ripped as a result of the wind’s movement of the water.

A detailed view of the mat

The mat is remarkably similar to structures we have seen in the Ordovician rocks at William Lake. And we have never observed these mats at Churchill in all our previous visits! Something else to explore the next time we are here . . .

A rocket on a stand marks the site of the old gate to the rocket range.

A rocket on a stand marks the site of the old gate to the rocket range.

spruces

The birdfish is the symbol of CNSC

Is that a bird?  Is it a fish?  No, it is the birdfish, the symbol of CNSC.

big pond

© Graham Young, 2015

White Cross Breakdown

October 5, 2015

Grand Manan Island: July, 2015

white cross above pebbles

A living Staurophora mertensii over gravel in shallow water: the “white cross” represents canals and gonads.

Jellyfish are known for being short-lived. Not far from a jelly bloom where uncountable medusae swim and pulse, you might expect to find numbers of dead and dying jellyfish. In the case of the jelly bloom in North Head harbour this past summer, weakened and dying jellies were washing up nearby along the shore of Flagg’s Cove. On one unusually warm Saturday afternoon, so warm that it was pleasant to wade in the Bay of Fundy, I spent some time documenting the breakdown of white cross jellies, Staurophora mertensii. The images below show the generalized series of stages, from the living jelly to its near disappearance (this transition doesn’t take long!). As usual, my long-suffering family was remarkably tolerant of my slightly obsessive jelly observing.

North Head Harbour

Flagg’s Cove at low tide, with North Head harbour in the background

Why should I want to know what happens to white cross jellies when they die and decompose? For several years, I have been working on a detailed study of fossil jellyfish from the William Lake site in central Manitoba. Those jellies, which were alive some 445 million years ago, were hydromedusan cnidarians very similar to Staurophora. By carefully examining and documenting the jellies at Flagg’s Cove, I improved my understanding of the fossil jellies at William Lake, and of the processes they had passed through during fossilization. This will contribute to the interpretation of those fossils, as we work toward their scientific publication.

Graham looks at jellies

Me, jellywatching (photo by Vicki Young)

A free-swimming jelly over sand

A free-swimming Staurophora over sand; note the tiny tentacles under the bell margin.

Of course, observing these modern jellies can’t tell us everything we might need to know to understand the fossils. These Grand Manan examples were breaking down largely as a result of the effects of water flow and of drying in the July sun. In places like muddy tidal flats, jellyfish may be affected more strongly by bacterial decomposition, which might not be such a big factor on this gravelly temperate shore. The fossil jellies I am studying were preserved in tropical carbonate muds, quite a different sort of environment. Still, some of the parallels are striking.

Side view shows the thick mesoglea (jelly)

A side view shows the thick mesoglea (jelly), which supports and stiffens the other structures.

When muscles contract, jelly takes a much more quadrate shape

When muscles contract, a white cross jelly takes a much more quadrate shape. This can also be seen in some dead jellies, suggesting that they were pulsing and contracting as they died.

A very fresh jelly on the beach isn't much different from a live one

A very fresh jelly on the beach isn’t much different from a live one (coin diameter 28 mm).

Even a fresh example conforms to the stones beneath it on the beach - no skeleton!

Even a fresh example conforms to the stones beneath it on the beach.

Many of the jellies are near one or two large channels/creeks along the beach

Many of the beached jellies are near one or two large channels/creeks along the beach. They were probably pushed into these areas by tidal currents.

As jelly begins to dry, the mesoglea collapses

As a medusa begins to dry, the mesoglea (jelly) collapses.

The tough canals and gonads maintain some plumpness

The tough canals and gonads maintain some plumpness as the mesoglea disappears.

The outer parts develop a silvery appearance - becoming dry and "crispy"

The margins develop a silvery appearance as they become dry and “crispy.”

This very crispy example is lifting off the surface, but canals are still visible

This very desiccated example is lifting off the beach surface, but the canals are still visible.

Any further than this and the jelly will no longer be recognizable, it will be gone

This example is nearing the end of its breakdown; any  further than this and the jelly will no longer be recognizable. It will just be a bit of “scum” on the beach, which will dissolve away at the next high tide.

So much to see in the sea!

So much to see in the sea! (photo by Vicki Young)

rope with algae

© Graham Young, 2015

Number 82

September 10, 2015
Number 82 and the 1976 Custom Deluxe, visiting a quarry in the Churchill quartzite.

Number 82 and the 1976 Custom Deluxe, visiting a quarry in the Churchill quartzite.

Sometimes Good Things Come Back

A few weeks ago we arrived in Churchill to carry out a field project, staying at the Churchill Northern Studies Centre as we always do. We were a big group of scientists for the first week, and CNSC assigned us two Suburbans from their fleet. The older was a rather beaten 1976 version, tarnished and burnished by decades of wind-driven salt (it may be aged, but it is a “Custom Deluxe”; on one side this moniker has been abbreviated to a more appropriate “Cus”). The newer of the two was ex-University of Manitoba, as demonstrated by the U of M logo still in the process of being peeled from its doors by Churchill’s -40 winters. It also carried U of M number 82, and my colleague Nancy Chow commented that she thought she had used it in the distant past.

The Churchill Northern Studies Centre owns a fleet of several vehicles, a substantial proportion of them are Suburbans of a certain age.

The Churchill Northern Studies Centre owns a quite a large fleet of vehicles, several of which are Suburbans of a certain age.

Later on, going through my digital photo collection I discovered that I had also used number 82, but quite some time ago. In spring of 2005 it had been our field vehicle in the Grand Rapids Uplands of central Manitoba. It was a fine truck for that work: reasonably comfortable seats, plenty of ground clearance, good power, and immense space for hauling colleagues, students, gear, and geological samples. The only downside, as I recall, was its voracious appetite for fuel.

In the Grand Rapids Uplands, spring of 2005

Number 82 in the Grand Rapids Uplands, spring of 2005

Now here it was again, its paint somewhat faded, some fresh dents added, and the suspension and seats are definitely more worn, but still an excellent truck. Churchill is only about 1000 kilometres from Winnipeg, but since there is no road connection it is not an easy drive between the two. To get number 82 to Churchill, someone had to drive it to a loading point somewhere along the Hudson Bay Railway (probably at Thompson), load it onto a flatcar, and chain it down for the long, slow, swaying trip across muskeg and tundra.

 

It is a challenge to get vehicles to and from Churchill. Here, the Manitoba Geological Survey's drill rig is loaded onto a flatbed car, for its travels on the Hudson Bay Railway.

It is a challenge to get vehicles to and from Churchill. Here, the Manitoba Geological Survey’s drill rig is loaded onto a flatbed car for a return trip south on the Hudson Bay Railway.

Now that it is in Churchill, the truck seems to have found its true milieu. Number 82 still has plenty of space for everything we might want to haul, and since CNSC is only about 25 km from town (and it is hard to find roads that go much farther than that), fuel is much less of an issue than on the long highways of southern and central Manitoba. The long wheelbase, good ground clearance, and forgiving suspension make it a natural for Churchill’s gravel roads and even for most of the tracks across cobbles and beach ridges, though the absence of 4×4 meant that we would not chance the mudhole by Halfway Point, or the soft sands of Polar Bear Alley.

82 on the shore at Airport Cove

Number 82 on the shore at Airport Cove

Suburbans are well suited to the gravel roads of the Churchill area. This is the shore road near Churchill.

Suburbans are well suited to the gravel roads of the Churchill area. This is the shore road near Churchill.

Number 82 is certainly showing signs of wear, or perhaps signs that it is developing  more of a personality. It produces a remarkable repertoire of noises, more than I have ever heard made by any other single vehicle. Sometimes the sources of these are obvious: a squeaking from the rear springs, a continuous groan from the power steering at full lock, a whirring from a belt or the water pump, and the rrrr-rrr-rrr of the engine surging wildly at idle. Other times, the truck just sighs or moans strangely, without any obvious source or reason. Maybe it is just a bit weary, but it is fascinating how the noises come and go; sometimes we heard a particular sound for just a brief interval before it vanished, to be replaced by something different a few minutes later.

Tools of the trade: there is plenty of room in the back for packs, boots, samples, tools, and a shotgun for polar bear protection.

Tools of the trade: there is plenty of room in the back for packs, boots, samples, tools, and a shotgun for polar bear protection.

I can imagine number 82 slowly developing yet more of a personality, gaining a deeper patina of iron oxide and limestone dust as it continues to serve CNSC over the coming years or decades. Maybe at some point it will be a truly historic artifact; from a paleontological perspective it has already transported some very significant fossils, and no doubt it has contributed to research in many other areas. Perhaps we should give better recognition to our field vehicles, and to the many other humble but essential tools that allow scientific research to take place. Some of them are true treasures.

Number 82, appropriately decorated as a paleontology field vehicle

Number 82, appropriately decorated as a paleontology field vehicle

Dave Rudkin adds an endocerid cephalopod to the side of the truck.

Dave Rudkin adds an endocerid cephalopod to the side of the truck.

sunset road

sunset

© Graham Young, 2015

Jelly Bloom at North Head

August 15, 2015

Grand Manan Island: July 12, 2015

IMG_8365edit

Mid-July, and there were a tremendous localized bloom of jellies in the harbour at North Head.  It didn’t seem to extend very far outside the harbour at that time (it was mostly just dead jellies nearby in Flagg’s Cove), but at North Head the numbers were truly stunning. A few days earlier we had seen some moon jellies (Aurelia sp.), but most of this bloom was the white cross jelly (Staurophora mertensii) accompanied by occasional lion’s mane (Cyanea capillata) and a few large comb jellies (probably Beroe, though I couldn’t get a close look at any of them).

There are many ideas floating around these days about the causes of jelly blooms. Not knowing what was going on in the local environment, I can’t really speculate on the cause of what we saw at Grand Manan; all I can say is that it was a deeply memorable phenomenon.

North Head harbour, viewed from Flagg's Cove

North Head harbour, viewed from Flagg’s Cove

IMG_8350edit

IMG_8368edit

When viewed in numbers, you can appreciate that Staurophora, though simple, is a remarkably varied creature.

IMG_8360edit

comb jelly

Staurophora beside a large comb jelly (ctenophore) that may be Beroe.

Cyanea capillata, the Lion's Mane

Cyanea capillata, the Lion’s Mane

__________________

__________________

The arrival of the Grand Manan Adventure put an end to our jelly gazing.

The arrival of the Grand Manan Adventure put an end to our jelly gazing.

 

 

The bloom apparently continued through July in the lower Bay of Fundy.

© Graham Young, 2015

Seal Cove Beach

July 19, 2015

Grand Manan Island, New Brunswick: July, 2015

mist

Walking on the seashore, I am often struck by the diversity that can exist in a very small area. Certainly you can observe a range of features and life forms if you walk in a forest or across a grassland, but on the shore the diversity effects are magnified and multiplied by the juxtaposition of land, air and sea. Physical forces above and below tide line act upon the water, sediment, and rock; life forms respond to this complex and dynamic system with their own complexity and dynamism. On a summer morning the beautiful sands of Seal Cove beach may seem like a peaceful, idyllic place for a walk, but even at a time like this the change is constant, and if you look you are bound to be surprised.

Seal Cove beach

The warming sun drives the last mist from the sands of Seal Cove beach.

What is the physical process that causes these remarkably regular tidal channels across the beach? I'm sure that there is an M.Sc. thesis here . . .

What is the physical process that causes these remarkably regular tidal channels to form along the beach? I’m sure that there is an M.Sc. thesis to be found here!

Old pilings protruding from the sand serve as homes for algae and invertebrates.

Old pilings protruding from the sand serve as homes for algae and invertebrates.

To understand how gulls predated/scavenged this crab, follow the footprints and traces backward.

To understand how gulls predated or scavenged this crab, simply follow the footprints and traces backward.

At the far end of the sandy beach, a sloping shelf of bedrock marks the transition . . .

At the far end of the sandy beach, a sloping shelf of bedrock marks the transition . . .

. . . to a seaweed-encrusted rocky shoreline.

. . . to a seaweed-encrusted rocky shoreline.

On this spur of rock, the crest of a toupee of seaweed is peeled aside to reveal a bald pate.

On this spur of rock, the crest of a seaweed toupee is peeled aside to reveal a bald pate.

A square metre of this rocky shore must host thousands of plants and animals.

If you start lifting the seaweed to look underneath, you will appreciate that a square metre of this rocky shore must host hundreds or thousands of plants and animals.

At the village end of the beach, the wonderful disused herring smokehouses have been rightly declared a national historic site, but most of them still await conservation and, perhaps, repurposing.

At the village end of the beach, behind the grasses and beach peas, the wonderful disused smoked herring “stands” have been rightly declared a National Historic Site, but most of them still await conservation and, perhaps, repurposing.

© Graham Young, 2015

For information about the Seal Cove National Historic Site, see here.

 

The Anthropocene Unconformity

June 1, 2015
Coal Harbour, Vancouver

Coal Harbour, Vancouver

It has been suggested that our current time interval is different from all the times that preceded it, that human activities are dramatically affecting the  Earth’s environment, atmosphere, and oceans. Geologists have long known the time since the end of the last ice age, about 12,000 years ago, as the Holocene Epoch, but about fifteen years ago it was proposed that we have passed from the Holocene into a new interval, the Anthropocene Epoch. The Anthropocene has not been accepted as a formal geological term, and its concept is still somewhat fuzzy. For instance, it does not yet have an agreed start date; it is most often considered to have begun around the start of the Industrial Revolution in the late 1700s, but other suggestions are that it began at the dawn of agriculture about 12,000 BP (in which case it would be virtually synonymous with the Holocene), or even with the first use of atomic weapons in 1945.

It is not easy to find much information about what the geological signature of the Anthropocene might be.* A lot is written about the magnitude of human effects on the modern environment, and geochemists have made many suggestions about characteristic chemical anomalies that can be seen in sediments and glacial ice cores, but how are we actually affecting geology that might be observed with the naked eye? A geological age should be readily recognizable in the sediment and/or rock record. The following are a few thoughts on things that geologists might be considering in some distant future . . .

Pembina Highway, Winnipeg

Pembina Highway, Winnipeg

 

A few weeks ago I was working in my parents’ garden in the Maritimes. It was a rainy spring day, too wet to do much digging, so I drove to the garden centre and bought a few bags of crushed rock.** Returning to the house, I spent much of the afternoon alternating between happily trundling an empty wheelbarrow down the path through the trees, and somewhat less happily pushing a barrow full of gravel upslope through the drizzle. This sort of activity is wonderful for opening the mind, and as I spread and tramped the gravel, a thought entered that empty space between my ears: I am making an unconformity.

Which, surely, I was. The hill at Fredericton is underlain by grey and brown Upper Carboniferous sandstones between 330 and 300 million years old, which are thinly clad by soil and trees many places, and which yield the abundant fieldstone that rises to the surface with every spring melt. The sandstone is an excellent material for drystone walls, but apparently it doesn’t work well as an aggregate, and the most common crushed rock in that area is quite different: fine-grained, mid-grey material that breaks into sharp-edged pieces. When we were children who invariably scraped our knees by falling on gravel paths, we referred to this rock as “slate.” I am pretty sure that much of it comes from the quarry at Springhill, just up river from Fredericton, in which case it is geologically a wacke belonging to the Burtts Corner Formation, of mid Silurian age (about 435-420 million years old).

The path

The path

The basic principle of superposition tells us that sedimentary strata are younger than those they overlie, since sediment is generally deposited on top of the Earth’s surface. If sedimentation was continuous (or appears to have been virtually continuous), then the contact between a stratum and that below it can be said to be conformable. If there was a break in sedimentation that can be identified as a gap in the time/rock record, then we call that an unconformity. A rock unit will be older than that beneath it only if the area was subsequently subjected to immense geological forces that resulted in folding or thrust faulting.

A Silurian rock that has been quarried, crushed, transported, bagged, and spread on a path has to be considered as a “new” geological material. All of the value-added work of the quarrying industry has acted as a reset button on the geological age of this material. It may contain microfossils of Silurian age, but the human redeposition has made it an Anthropocene (or Holocene) deposit, here lying unconformably above the Carboniferous sandstone.

Gotha, Germany

Stone surfaces in Gotha, Germany

If you have read this far, you are probably thinking, “So what? Why is it at all significant that you spread a few bags of gravel on a path in the rain?” Considered by itself, this isn’t very important at all, but it is a very small example of what we humans are doing all the time. We are nothing if not industrious. Much of our industry produces results that seem fabulous to us, but that will leave virtually no trace when we are gone; I challenge you to imagine how Facebook or Twitter or The Beatles will produce any geological record. But some of our works will leave evidence long after our species has departed.

Montreal

Montreal

Think of how many tonnes of concrete, asphalt, and glass are required to produce one city of modest size. Consider the volume of aggregate that has been quarried for harbours and airports, the amount of iron that has been incorporated into vehicles and bridge spans, the quantity of clay that has been baked into brick for city houses. As buildings and roads are demolished to make way for newer ones, the materials are buried and incorporated into the Earth. The hundreds of years through which we have behaved in this way this may seem long to us, but they are really the blink of an eye in geological terms.

The burial of these materials could be considered as a single depositional event, generating an immense human-made stratigraphic horizon that extends around our planet. They have all been re-worked and redeposited, and most lie incongruously above the natural surfaces that they hide. On floodplains or lakebeds the human deposits may rest on top of silts only decades to centuries old, but even there the dividing line is crisp, obvious, and mappable. In many other places the bricks, concrete, and asphalt lie directly on much older surfaces, such as that Carboniferous sandstone.

Gotha paving

Diverse geological materials in Gotha, Germany

Considering how much of the world is now occupied by our activities, and what a proportion we have paved over in one way or another, it is not unreasonable to talk about an Anthropocene Unconformity. And when we take the city deposits, and add to them the mine waste, and the garbage dumps, and the smelting slag, and all the refuse that will eventually fall out of the Pacific trash vortex and be redeposited on the deep ocean floor, and the general debris left in places as difficult to reach as Mount Everest, then maybe we should even call it the Great Anthropocene Unconformity.***

King Street East, Saint John

King Street East, Saint John

Although the horizon composed of specifically human-made and human-modified materials would be huge, it would also be patchy. To really understand the scale of the Anthropocene Unconformity, we will need to consider secondary factors that also affect the geological record. In various regions, the erosion due to farming and logging may result in considerable sediment being redeposited in places where there wasn’t sediment before. In some places, fluid injection into deep wells is causing earthquakes to become common where they were previously rare or nonexistent, so we might expect to see an increase in earthquake induced deposits such as landslides and seismites.

But the really big player in the Anthropocene depositional story will probably be sea level rise. Various estimates suggest that global sea level will rise by 20 centimetres to two metres by the year 2100, and possibly by 4-6 metres in the coming centuries. It has been calculated that 26,000 square kilometres of land would be inundated by a sea level rise of just 66 centimetres, so clearly the loss of land would be immense if a rise of several metres takes place.

Greystones, Ireland

Greystones, Ireland

In the sediment and rock record, what is the signature of a sea level rise? There is considerable variation, of course, but the stratigraphic record of sea level rise (or transgression) is generally relatively abrupt, with land surfaces or shallow-water deposits being quite sharply replaced by sediment deposited in substantially deeper water. A marine flooding surface, evidence of the sea moving across a formerly eroded subaerial surface, is a classic form of unconformity. Future scientists looking at the sedimentary evidence of the third millennium sea level rise would expect to see river valleys filled with marine sediment, coastal sand dunes replaced by shallow shelf deposits, and drowned reefs and barrier islands covered with deeper water sediments.

Vancouver Convention Centre

Vancouver Convention Centre

Locations currently occupied by low-lying coastal cities such as Miami will be the best places for field studies of the Anthropocene. In Miami, a huge mass of concrete, glass, and other debris, mixed with sediment resulting from human-caused erosion, will rest almost directly on top of porous limestone dating back to the Pleistocene Epoch. The top of these anthropogenic materials will form a flooding surface, overlain by subsequent marine deposits. The completeness of this record might permit the suggestion that Miami Beach could make a very good type locality for the base of the Anthropocene.

For any geologists considering Earth in the distant future, the Anthropocene Unconformity may well be some of the best evidence of our presence here: a sharp and nearly horizontal base to the varied mass of Anthropocene deposits that overlie it, recognizable in many places around the planet. Thinking about this a bit more, I just hope that the top of the Anthropocene deposits is not also defined by a crisp surface that can be traced globally. It would be particularly bad if that upper contact is marked by an ash horizon, a boundary clay, or an anomaly rich in Caesium-135.

Snow on the Saint John River, Fredericton

Snow on the Saint John River, Fredericton

* The great thing about publishing a blog post from a position of some ignorance is that readers will point you toward what you should have known before you published the post. My friend Roy Plotnick suggested I should look at this interesting paper:
Zalasiewicz, J., Waters, C. N., and Williams, M., 2014, Human bioturbation, and the subterranean landscape of the Anthropocene: Anthropocene, v. 6, no. 0, p. 3-9.
This is in a volume titled “Landscapes in the Anthropocene: State of  the art and future directions”, which contains quite a few worthwhile publications on related topics.

** Here in Manitoba we would have called it “quarter down”, as it consists of particles of mixed size that are smaller than about 1/4 inch across. In New Brunswick, I think it was referred to as “crusher dust”. It is fascinating how variable some of these terms are, even within Canada.

*** I have searched the Internet, and it seems that the term Anthropocene Unconformity has only been used in a local sense, and Great Anthropocene Unconformity has never been used before. It seems like a very useful concept, and I would be interested to know if there is some comparable term already out there.

Winnipeg

Winnipeg

Pembina Highway, Winnipeg

Pembina Highway, Winnipeg

 

© Graham Young, 2015

 

Mélange

February 21, 2015

Mélange: A mixture; a medley; odds and ends; a motley assortment of things, . . .

In geology, a mélange is a large-scale breccia, a mappable body of rock characterized by a lack of continuous bedding and the inclusion of fragments of rock of all sizes, contained in a fine-grained deformed matrix.”

Jemseg church

However you look at it, St. James Church in Lower Jemseg, New Brunswick, is a mélange. Its architecture is a mixture of features and influences that somehow combine to make a charming and coherent building. Geologically, it can also be considered a mixture, though of course it is one produced by human agents rather than the immense forces that generate a mélange under natural conditions.

little_window

Even visitors with no knowledge of geology will immediately recognize that materials in the sturdy outer walls were derived from a variety of sources. Below and beside the windows, large blocks of dark purple sandstone contrast with various paler shades in the smaller blocks. The buttresses are armoured with wedge-split granitic rock, while rounded granite fieldstone can be seen in places in the walls. And then there is that soft, pale carved stone around the windows and the doorway. What are all these stones, and how did they get here?

The stones were pulled together through human expediency and opportunity. Jemseg, on the low-lying east bank of the lower Saint John River valley, is not a place endowed with wonderful bedrock, but the local geology is varied. Some of the stone came from nearby sources, but a bit of it travelled what might be called an unreasonable distance.

doorway

Constructed in New Brunswick’s great burst Anglican church construction in the latter part of the 19th century, St. James Church dates from 1887 and was consecrated in 1889 (general information about the church can be found here). This stone building is quite different from most of the churches built in this phase, which are wooden and “gothic”. Its form is also crudely gothic, but leavened with a dose of what might well be Scandinavian influence, particularly in the shape of the tower.

Although this church may seem like an old structure to those of us who live in western Canada, it is relatively recent in the history of Jemseg, a place that was first settled by Europeans in 1659 and that served as the capital of Acadia in 1690-91, some 325 years ago. Settlement occurred so early here because the junction of the Jemseg and Saint John Rivers was desirable as a trading post location. Both waterways are readily navigated, and Jemseg is higher than the marshy islands and moose pasture immediately adjacent to the rivers.

The tower beautifully illustrates how Hampstead Granite was used to armour exposed corners of the building.

The tower beautifully illustrates how Hampstead Granite was used to armour exposed corners of the building.

And although 1659 seems like the dawn of time in terms of European settlement in Canada, the stones that form the church are of course far older; the oldest stone is literally as old as the hills that form the west side of the valley some 20 kilometres below Jemseg. This stone is the remarkably tough and beautiful granite that forms the edges of the buttresses and corners of the church. It shows remarkably little wear from its long exposure to the elements there.

The granite quarried in the Hampstead area from the 1830s up to the mid 20th century is commonly referred to as Hampstead Granite or Spoon Island Granite. It was used most commonly for monuments and grindstones, but this church demonstrates that it could also be incorporated into structures (though I suspect that it was rather difficult to work with in this role). Geologically, the Hampstead Granite is part of the Early Devonian Evandale Granodiorite (roughly 400 million years old), an intrusion of 20 square kilometres that consists of “light grey to pink, medium-grained, equigranular, hornblende-biotite granodiorite varying to monzogranite” (Government of New Brunswick industrial minerals summary).

A detail of the Hampstead  Granite (coin diameter is 26.5 mm).

A detail of the Hampstead Granite showing the dark biotite and hornblende, and lighter quartz and feldspars (coin diameter is 26.5 mm).

Granitic intrusions are bodies of rock that cooled slowly from the molten state,  often associated with the melting of crust that occurred as the Earth’s crust was deformed near plate boundaries. In this particular case the granite was formed near the meeting of two tectonic zones, the Gander and Avalon zones, during the growth of the Appalachian Mountains. The Early Devonian in this region is associated with closure of an ocean during the Acadian Orogeny, one of the several intervals of intense deformation, plutonic (deep) igneous activity, and metamorphism that resulted in the development of the Appalachians (see here for a substantial discussion of the Acadian Orogeny in this region, a topic far too complex to be explained using my meagre knowledge of structural geology and tectonics).

Following a mountain-building interval, the new steep slopes and high elevations are subject to greatly increased rates of erosion and sediment transport. In this region, the Devonian orogenic deformation was followed by a major interval of sediment deposition during the Carboniferous, roughly 360 to 300 million years ago. Carboniferous sedimentary rocks, many of them formed in rivers, swamps, and floodplains, cover eastern New Brunswick and the rest of the Carboniferous Maritimes Basin.

Varied sandstones, some of them showing cross bedding, adjacent to Hampstead Granite.

In this wall, varied sandstones, some of them showing cross bedding or cross stratification, are adjacent to a corner of Hampstead Granite.

Most stone in the walls of the Jemseg church is clearly Carboniferous clastic rock: broadly speaking it is “sandstone”, though much of it is “dirty sandstone” that could be more properly called arkose or even greywacke. I am not sure what formation was its source, though from its very mixed quality it is likely the most local of the stones incorporated into this structure. The bedrock underlying the village would be of this sort, so some of the stone could have even been quarried here, or perhaps across the river where the land is a bit higher. The variety of stone, however, suggests that much of it was collected as loose pieces. Since the pieces are angular they were not transported by water or ice; they are regolith that had been frost-wedged from the bedrock beneath.

A very "dirty sandstone" containing abundant rock fragments and a mixture of minerals.

A very “dirty sandstone” containing abundant rock fragments and a mixture of minerals.

It is unfortunate that the builders of the church did not cast slightly farther afield for sandstone: the Rainsford Sandstone (Minto Formation) used in the walls of Christ Church Cathedral in Fredericton has excellent colour and consistency, and the remarkably tough Grindstone Island Sandstone (Boss Point Formation) used in the cathedral’s buttresses is among the best sandstones anywhere. The former was quarried on what is now the Fredericton Golf Club, while the latter is from the upper end of the Bay of Fundy; clearly both of these stones would have been a bit dear for the builders of this parish church.

On a buttress of the Jemseg Church, the facing of local sandstone and armouring with Hampstead Granite (above) can be contrasted with the Rainsford Sandstone with Grindstone Island Sandstone armouring  on Christ Church Cathedral in Fredericton (below).

On a buttress of the Jemseg Church, the facing of local sandstone and armouring with Hampstead Granite (above) can be contrasted with the Rainsford Sandstone with Grindstone Island Sandstone armouring on Christ Church Cathedral in Fredericton (below).

cathedral buttress

What the sandstone in St. James Church lacks in construction quality, it makes up in geological interest and variety. Walking around the building on a sunny day, you can pick out a great range of features in the buff, golden, chocolate brown, brick-coloured, or rust-red stone: angled crossbeds from the interior of a river sandbar, rusty ironstones that might be associated with overbank flooding on an ancient floodplain, microfaults that cut across the stratification, and a dirty sandstone with admixture of angular and rounded rock fragments from those older granites.

A cross-stratified sandstone, which also appears to show small-scale faulting

This cross-stratified sandstone also apparently shows small-scale faulting (coin diameter is 26.5 mm).

Although the church’s builders were content with local sandstones, the fine stone that makes the window arches and other carved features has come from very far away, and travelled here by a circuitous route. This is Caen stone, a yellowish limestone of Jurassic age (about 167 million years old) that formed on ancient seafloors in what is now northern France. Caen stone is fine-grained, oolitic, and of very consistent texture. As it is readily carved, it has been used in French buildings for many centuries, and also can be seen in major structures elsewhere such as the Tower of London, Canterbury Cathedral, and the Old South Church in Boston.

The end window illustrates the fine carving qualities of Caen stone. Note the great variety of other stone in this wall!

The end window illustrates the fine carving qualities of Caen stone. Note the great variety of other stone in this wall!

In St. James Church, why does such an elite material appear directly adjacent to the lowly local sandstone? Certainly it would have cost a substantial amount to ship this stone from France to New Brunswick near the end of the age of sail, but that cost was not borne by the builders of this church. Rather, the stone window frames and door arch here are “remnants”: this Caen stone was part of a large batch shipped to Fredericton several decades earlier for the construction of the cathedral, and presumably the leftover stone had been in storage waiting for just this sort of use. So it was shipped downriver the 50 kilometres from Fredericton, for a fraction of the cost of receiving stone from the other side of the Atlantic Ocean.

As is the case for some other wonderful carving stones, Caen stone’s softness limits its ability to stand up to long-term weather exposure in tough climates. In Jemseg this stone has clearly suffered badly over the years, to the extent that some of it has been patched and much of it has been painted.

Some of the Caen stone has been severely weathered (coin diameter is 26.5 mm).

Some of the Caen stone has been severely weathered. Note the fine and even grain (coin diameter is 26.5 mm).

For the final piece of the geological story, a close examination of the church’s walls reveals a few interlopers: between the angular blocks of sandstone are occasional pieces of rounded sandstone and cobbles of grey or pinkish granite. These materials are similar to the other sandstone and granite in the walls, but geologically they have travelled through yet another process. They have been to “finishing school”, in the form of erosion, transport, and redeposition.

Some time in the relatively recent past these cobbles and small boulders were picked up from the bedrock where they had resided for several hundred million years. Perhaps they were transported by glacial ice, or maybe bounced around in a river system for a while, before being deposited in a place where people would gather them, such as in a gravel pit or in one of New Brunswick’s famously stony fields (the old story is that farmers often complained about “growing rocks”, as each spring the snow melt revealed a new crop of stones that had been elevated to the surface by the frost).

A piece of granitic fieldstone is incorporated into a wall.

A piece of granitic fieldstone is incorporated into a wall.

This blog post started out as a simple set of photos of the stone in this lovely church, but like the rocks in the fields it also grew. That is the fascinating thing, when you start to look into the geology and history of many old stone buildings: the linkages radiate outward in every direction, in ever-expanding circles. It is remarkable that a small church can store so much of the past, but all stone buildings, whatever their size, hold within them many stories – the history of the people who built them, the history of the people who quarried and transported the stones, and the geological pasts of the stones themselves.

In addition to the variety of sources linked in the text above, I also consulted print publications including:

Gregg Finley and Lynn Wigginton, 1995, On Earth as it is in Heaven: Gothic Revival Churches of Victorian New Brunswick, Goose Lane Editions.

William A. Parks, 1914, Report on the Building and Ornamental Stones of Canada, Volume II, Maritime Provinces, Canada Department of Mines.

If you wish to find it, St. James Church is located along NB Route 715, at  45°47’9.29″N, 66° 5’42.37″W.

If you ever have the chance to visit, the interior of the church is also worth a look. The board and batten is a clear indication of the very high level of carpentry in 19th century New Brunswick. My recollection is that the boards and battens are butternut and oak, respectively.

If you ever have the chance to visit, the interior of St. James Church is also worth a look. The board and batten construction is clear evidence of the very high level of carpentry in 19th century New Brunswick, and not surprisingly it is evocative of shipbuilding work (wooden ships were launched at Jemseg). My recollection is that the boards and battens are butternut and oak, respectively.

Just up the road stands this lovely overgrown Baptist church.

Just up the road stands this lovely overgrown Baptist church . . .

. . . and just down the road, Jerusalem artichokes wave beside the river.

. . . and just down the road, Jerusalem artichokes wave beside the river.

© Graham Young, 2015

Follow

Get every new post delivered to your Inbox.

Join 179 other followers